Tandem Beckmann and H uisgen-W hite rearrangement of the 9-azabicyclo[3.3.1]nonan-3-one system. Part 2. ${ }^{1}$ The second mode of the rearrangement leading to 6 -(prop-1-enyl)piperidin-2-ylacetic acid, a versatile intermediate for the syntheses of piperidine alkaloids $(+)$-pinidine and (+)-monomorine I

O samu M uraoka,* Bao-Z hong \mathbf{Z} heng, K azuhito \mathbf{O} kumura, E mi Tabata, Genzoh Tanabe and M ichinori Kubo

Faculty of P harmaceutical Sciences, K inki U niversity, K owakae 3-4-1, H igashi-O saka, Osaka 577, J apan

Abstract

The second mode of the H uisgen-W hite rearrangement of the bicyclic lactam, (-)-2-ethyl-4-0xo-3,10diazabicyclo[4.3.1]decane (-)-13, leading to cis-[6-(prop-1-enyl)piperidin-2-yl]acetic acid (-)-9a under alkaline conditions is described. A reasonable reaction mechanism accounting for the preferable formation of the (E)-propenyl isomer (E)-9a is presented. C onversions of the olefinic acid 9a into two piperidine alkaloids (+)-pinidine (+)-10 and (-)-dihydropinidine (-)-21, and (- -cis-2-formyl-6methylpiperidine (-)-22, a key synthetic intermediate for an ants' trail pheromone (+)-monomorine I $(+)-11$, are also described.

Introduction

As part of the continuing interest in the application of the Baeyer-Villiger reaction to the stereo- and regio-specific synthesis of specifically substituted molecules, there has been much study of its mechanism, especially in respect of its migratory aptitude as well as its scope and limitations. ${ }^{2}$ In the course of our exploratory study on the applicability of bicyclo[3.n.1]-alkan-3-one as a synthon to natural product synthesis, we earlier examined the Baeyer-Villiger reaction of 9-azabicyclo[3.3.1]nonan-3-one 1 ($\mathrm{X}=\mathrm{CH}_{2}, \mathrm{NCO}_{2} \mathrm{R}, \mathrm{N} \mathrm{SO}{ }_{2} \mathrm{Ph}$), where as a result of anomalous lack of reactivity no rearrangement product 2 was formed. This lack of activity towards oxidation was ascribed to the back-side steric hindrance of the 7 -endo hydrogen which interfered with formation of the tetrahedral intermediate $\mathbf{3}$ in the markedly rigid molecule. ${ }^{3}$ As an alternative to such an oxidation, we exposed the corresponding oxime 4 to a tandem Beckmann and Huisgen-White rearrangement, thereby inducing the rearrangement and obtaining the desired lactone $\mathbf{2}$ in moderate yield via the lactam 5. Application of the sequence to a homochiral bicyclic reactant, (+)-benzyl 2α-ethyl-3-oxo-9-azabicyclo[3.3.1]nonane-9carboxylate (+)-6a, enabled us to complete the first asymmetric synthesis of (-)-dihydropalustramic acid (-)-7, a degradation product of Equisetum spermidine alkaloid palustrine $8 .{ }^{1}$ In this paper, we report further examination of the reaction under different conditions, where a further mode of rearrangement leading to the olefinic acids, $[(2 R)-(E)$ - and ($2 R$)-(Z)-cis-1-benzyloxycarbonyl-6-(prop-1-enyl)piperidin-2-yl]acetic acid (E)- and (Z)-9a, have been detected. Transformation of the acids (E)- and (Z)-9a into two piperidine alkaloids, (+)-pinidine 10^{4} and (+)-monomorinel (+)-11,5 has been demonstrated.

Results and discussion

Tandem Beckmann and H uisgen- W hite rearrangement of (+)benzyl 2-ethyl-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate (+)-6 under alkaline conditions
A ccording to the method described in the preceding paper, ${ }^{1}$ chiral reactants (+) -6α and (+)- 6β with $\sim 94 \%$ optical purity were prepared from compound $\mathbf{1}(\mathrm{X}=\mathrm{NCbz})$ by employing
enantioselective deprotonation as the key reaction. Since it was difficult to identify these two isomers, (+)- $6 \boldsymbol{\alpha}$ and (+)-6 from their spectroscopic properties, structural discrimination was established on the basis of a single-crystal X-ray analysis of the benzenesulfonamide of the β-isomer, 2-ethyl-9-phenylsulfonyl-9-azabicyclo[3.3.1]nonan-3-one (\pm)-12 $\boldsymbol{1}$, which was proved, in the preceding paper, to be in the twin chair conformation. ${ }^{1}$ The crystal structure of the α-isomer (\pm)-12 α has been examined in the present study, and found also to be in the twisted twin chair conformation (Fig. 1). Complete assignments of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals have also been made in the present work by the use of two-dimensional NM R studies (Table 1).
It is noteworthy that in the ${ }^{13} \mathrm{C}$ NMR spectrum of the $\alpha-$ isomer (\pm)-12 α considerable upfield shifts were observed for the signals due to $\mathrm{C}-8$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$, which appeared at $\delta_{\mathrm{c}} 24.9$ and 19.0, respectively, owing to the γ-gauche effect. This observation is consistent with the crystal structure obtained by the X -ray analysis where as a result of the piperidone ring being slightly bent outside these two moieties are forced to face each other more closely. Remarkable NOE enhancement observed between the 8 -endo proton and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ also support their relative stereochemistry.
It is also interesting to note that, despite the 1,3-dipolar repulsion between the ethyl substituent and the axial hydrogen at $\mathrm{C}-4$, which might cause the ring inversion of the piperidone ring into the boat, compound $(\pm)-\mathbf{1 2} \beta$ is still in the twin chair conformation of the two possible conformations, i.e. twin chair and chair-boat as shown in Scheme 2. In the β-isomer (\pm)-12 $\boldsymbol{1 2}$, the upfield shift of the signal arising from C-4 is small, and appeared at δ_{c} 43.8: $\sim 2 \mathrm{ppm}$ higher than one of the corresponding carbons ($\delta_{c} 45.7$) of the α-isomer (\pm)-12 α. This implies that the deformation of the piperidone ring in the β-isomer $(\pm)-12 \beta$ helps to reduce the 1,3 -dipolar interaction between the ethyl and the 4 -axial hydrogen, which is understandable from the side view of the molecule as shown in Fig. 2.
Both isomers $(+)-6 \alpha$ and $(+)-6 \beta$ were converted into the corresponding bicyclic lactams, (-)-benzyl 2α - and 2β-ethyl-4-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate (-)-13 α and $(-)-\mathbf{1 3} \beta$, by Beckmann rearrangement of the corresponding oximes, $(+)$-benzyl 2α - and 2β-ethyl-3-hydroxyimino- $9-$

$(+)-10$

(+)-11

Scheme 1
azabicyclo[3.3.1]nonane-9-carboxylate (+)-14 $\boldsymbol{\alpha}$ and (+)-14 β, respectively. ${ }^{1}$
Treatment of the β-isomer (-)-13 β with nitrogen peroxide followed by thermolysis resulted in denitrosation to afford quantitatively the parent lactam (-)-13ß, although similar treatment of the α-isomer $(-)-\mathbf{1 3 \alpha}$ had afforded the corresponding rearrangement product, $\{[15-(1 \alpha, 5 \beta, 8 a \alpha)]$-1-ethyl-3-oxohexahydro-3H-oxazolo[3,4-a]pyridin-5-yl\}acetic acid threo15 a , as the main product. ${ }^{1}$ On the other hand, nitrosation followed by alkaline degradation of the resulting N -nitroso compound $\mathbf{1 6 \beta}$ gave, as the main product, a mixture of the olefinic acids (E)- and (Z)-9a accompanied by a small amount of (2R)-erythro-cis-1-(benzyloxycarbonyl)dihydropalustramic acid

Fig. 1 ORTEP drawing of compound $\mathbf{1 2 \alpha}$ with crystallographic numbering scheme

12β
Scheme 2

Fig. 2 ORTEP drawing of compound $\mathbf{1 2 \beta}$ with crystallographic numbering scheme
erythro-17a as a yellow oil. This was subjected to F ischer's esterification to give the corresponding esters, methyl [(2R)-(E)- and (2R)-(Z)-cis-1-benzyloxycarbonyl-6-(prop-1-enyl)piperidin-2yl]acetate (E)- and (Z)-9b and methyl (2R)-(+)-erythro-cis-1(benzyloxycarbonyl)dihydropalustramate (+)-erythro-17b, ${ }^{1}$ in 54 and 3% yield, respectively from the lactam (-)-13及. Compounds (E)- and (Z)-9b were barely separable and the relative product ratio was determined to be ca. 15:1 on the basis of an ${ }^{1} \mathrm{H}$ N M R analysis of the mixture. Formation of a trace amount of methyl (2R)-threo-cis-1-(benzyloxycarbonyl)dihydropalustramate threo-17b has been detected by GC-M S analysis.
When 2α-nitroso lactam 16α was treated with aq. sodium hydroxide, (E)-olefinic acid (E)-9a was also produced, but in a lower yield $(\sim 28 \%)$. It is interesting to note that no detectable amount of (Z)-olefinic acid (Z)-9a was formed from the α isomer 16a. Formation of oxazolidinones threo- and erythro15a and dihydropalustramic acids erythro- and threo-17a were also detected. These acids were purified after derivatisation into the corresponding methyl esters $(E)-(-)-9 \mathbf{b}$, methyl $\{[15-$ ($1 \alpha, 5 \beta, 8 \mathrm{a} \alpha)]$ - and $[1 \mathrm{R}-(1 \alpha, 5 \alpha, 8 a \beta)]$-1-ethyl-3-oxohexahydro3 -oxazolo[3,4 -a]pyridin-5-yl\}acetate threo- ${ }^{-1}$ and erythro-15b

Table $1 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for benzenesulfonamides $\mathbf{1 2 \alpha}$ and $\mathbf{1 2 \beta}$

Position	12α		12β	
	$\delta_{\mathrm{H}}{ }^{\text {a }}$	$\delta_{c}{ }^{\text {b }}$	$\delta_{\mathrm{H}}{ }^{\text {a }}$	$\delta_{\mathrm{c}}{ }^{\text {b }}$
1	4.42 (br m)	52.9 (d)	4.31 (br d-like)	53.3 (d)
2	2.38 (br dt, 7.0, 7.0)	54.4 (d)	2.16 (brt, 7.0)	57.2 (d)
3		209.7 (s)		211.4 (s)
4endo	2.33 (dd, 15.5, 1.0)	45.7 (t)	2.26 (dt, 14.0, 1.0)	43.8 (t)
exo	2.72 (dd, 15.5, 7.0)		2.80 (dd, 14.0, 7.0)	
5	4.50 (br m)	50.5 (d)	4.45 (br d-like)	50.2 (d)
6 endo	1.60 (dm, 14.5)	30.2 (t)	*	29.0 (t)
exo	1.70 (tt, 14.5, 5.0)		*	
7endo	1.33 (qd, 14.5, 5.0)	15.9 (t)	*	16.0
exo	1.48 (dm, 14.5)		*	
8endo	1.72 (dm, 14.5)	24.9 (t)	*	29.4 (t)
exo	1.52 (tt, 14.5, 5.0)		*	
$\mathrm{CH}_{3} \mathrm{CH}_{2}$	1.14 (dqint, 15.0, 7.0)		$1.60 \text { (dqint, 15.0, } 7.0 \text {) }$	25.3 (t)
	$1.99 \text { (dqint, 15.0, } 7.0 \text {) }$	19.0 (t)	$1.69 \text { (dqint, 15.0, } 7.0 \text {) }$	
$\mathrm{CH}_{3} \mathrm{CH}_{2}$	0.95 (t, 7.0)	11.6 (q)	0.93 (t, 7.0)	11.7 (q)
arom.	7.50-7.62 (3 H, m)	126.8 (d)	7.50-7.61 (3 H, m)	126.9 (d)
	7.87-7.93 (2 H, m)	129.3 (d)	7.88-7.92 (2 H, m)	129.2 (d)
		132.7 (d)		132.6 (d)
		141.1 (s)		141.4 (s)

${ }^{\text {a }}$ Recorded in CDCl_{3} with chemical shifts relative to $\delta_{\mathbf{H}}\left(\mathrm{M}_{4} \mathrm{Si}\right) 0$ at 500 M Hz . ${ }^{\text {b }}$ Recorded in CDCl_{3} with chemical shifts relative to $\delta_{\mathbf{c}}\left(\mathrm{CDCl}_{3}\right) 77.00$ at 125 M Hz . * 1.45-1.70 (6 H , m, 6-, 7- and 8-H).

Scheme 3 Reagents and conditions: i, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{AcONa}$; ii, $\mathrm{TsCl}, \mathrm{K}_{2} \mathrm{CO}_{3} ;$ iii, $\mathrm{N}_{2} \mathrm{O}_{4} ;$ iv, 5% aq. NaOH
(15\%), and methyl erythro- and threo-cis-dihydropalustramate erythro- and threo- $\mathbf{1 7 \mathbf { b } ^ { 1 }}$ (6\%).

The IR spectrum of the olefinic ester (-)-9b showed absorption for the ester and urethane moieties at 1731 and $1687 \mathrm{~cm}^{-1}$, respectively. A large coupling constant ($\mathrm{f}_{\text {trans; }} 16.0 \mathrm{~Hz}$) for the main olefinic signals appeared at $\delta_{\mathrm{H}} 5.51$ and 5.57 in the ${ }^{1} \mathrm{H}$ NMR spectrum confirming the E-configuration of the main product. In the ${ }^{13} \mathrm{C}$ N M R spectrum, two olefinic methyl signals corresponding to the E - and Z -configurations have been observed at $\delta_{\mathrm{c}} 17.9$ and 12.9 , respectively.

Reaction mechanisms

It is suggested that in polar solvents formation of olefinic acids results from the β-elimination caused by attack of the solvent on the β-hydrogen rather than via the intramolecular pathway. ${ }^{6}$ Thus, the formation of the olefinic acids 9a would result from attack of a hydroxide anion on one of the methylene protons anti to the $\mathrm{C}^{2}-\mathrm{N}$ bond. From the α-isomer 16a, no (Z)-olefinic acid (Z)-9a has been produced. Speculation as to the stereochemistry of the intermediates in determining the regiochemical outcome of the β-elimination leading exclusively to the (E)-
isomer (E)-9a is illustrated in Scheme 4, where N ewman projections of each intermediate $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ through $\mathrm{C}^{2}-\mathrm{C}_{2} \mathrm{H}_{5}$ bond are presented above or under the corresponding intermediate.

In order to avoid steric hindrance between C-11 and the methyl group, the $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ bond in the ethyl moiety is likely to be orientated anti to the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond in the bicyclic system. Consequently, from the α-isomer $\mathbf{1 6 \alpha}$ elimination via the intermediate A is preferred, giving (E)-olefinic acid (E)-9a exclusively. Predominant formation of the (E)-isomer (E)-9a from the β-isomer $\mathbf{1 6 \beta}$ is attributable to the preferred formation of the intermediate \mathbf{C} rather than the intermediate \mathbf{D}. The decreased selectivity for the (E)-olefin (E)-9a observed in the case of the β-isomer $\mathbf{1 6 \beta}$ in comparison with the α-counterpart 16α is reasonable because the steric hindrance around CH_{3} in the intermediate \mathbf{D} is not as much as that in the intermediate \mathbf{B}.

M echanisms for the formation of the oxazolidinones $\mathbf{1 5}$ via the corresponding lactones had been discussed in the preceding paper, ${ }^{1}$ and their structures including the relative stereochemistry of the functionalities were determined by comparison of their spectroscopic properties with those of authentic specimens.

${ }^{16 \alpha}$

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{N}_{2} \mathrm{O}_{4} ; \mathrm{ii}, 5 \%$ aq. NaOH

Transformation of the olefinic esters (-)-9b into (+)-pinidine (+)10 and (+)-monomorine I (+)-11
The methyl acetate function of compound (-)-9b was converted into the methyl group in the following manner. A ttempted selective transformation ${ }^{7}$ of compound $(-)-9 b$ into an aldehyde, (-)-benzyl (2R)-cis-2-(2-oxoethyl)-6-(propen-1yl) piperidine-1-carboxylate (-)-18, using diisobutylaluminium hydride (DIBAL-H) was unsuccessful, and resulted in formation of a mixture of compound (-)-18 and an alcohol, (-)benzyl (2R)-cis-2-(2-hydroxyethyl)-6-(prop-1-enyl)piperidine-1carboxylate (-)-19, even under careful treatment at lower temperature. Thus, the aldehyde (-)-18 was prepared in two steps via DIBAL-H reduction followed by the Swern oxidation of the resulting alcohol (-)-19 in 93% yield from compound (-)-9b. The ${ }^{1} H$ NM R spectrum of thealdehyde(-)- 18 showed a triplet at $\delta_{\mathrm{H}} 9.68$ characteristic of the aldehyde proton. Compound (-)-18 was then treated with tris(triphenylphosphine)rhodium(I) chloride (Wilkinson complex) to give the desired decarbonylated product, (-)-benzyl (2S)-cis-2-methyl-6-(prop-1-enyl) piperidine-1-carboxylate (-)-20, in 94% yield, the ${ }^{1} \mathrm{H}$ NM R spectrum of which showed a doublet at $\delta_{\mathrm{H}} 1.18$ due to the newly formed methyl moiety. The relative product ratio between the (E)- and (Z)-isomers (E)- and (Z)-20 was kept unchanged until this stage, when the 15:1 mixture of compounds (E)- and (Z)-9b was employed as the starting material. Treatment of the mixture (E)- and (Z)-20 by boron tribromide caused deprotection and isomerization simultaneously, affording exclusively the desired (E)-olefin (+)-10 in 86% yield, which is an enantiomer of pinidine, a major alkaloid of Pinus sp. ${ }^{4 a-c}$ When hydrogenated in the presence of 5% palladium-on-carbon, compound $(-)-20$ afforded (-)-dihydropinidine (-)-21, ${ }^{\text {4a,b,f, } 8}$ a minor component isolated in 1993 from the M exican Bean Beetle, E philachna varivestis. ${ }^{\text {8a }}$

On the other hand, Takahata and co-workers ${ }^{5 m}$ reported an asymmetric synthesis of (+)-monomorine I (+)-11, a trail pheromone of Falaoh's ants in Egypt, M onomorium pharaonis, ${ }^{\text {5a,b }}$ via an aldehyde, (-)-benzyl (2S)-cis-2-formyl-6-methylpiperidine-1-carboxylate (-)-22. Thus, ozonolysis of olefin (-)-20 was carried out to give compound (-)-22 in 67%
yield. The spectral properties were in accord with those of the authentic sample prepared via the alternative route ${ }^{5 \mathrm{~m}}$

Consequently, by utilizing the dual mode of the HuisgenWhite rearrangement, syntheses and/or formal synthesis of three more piperidine alkaloids (+)-pinidine (+)-10, (-)dihydropinidine (-)-21 and (+)-monomorine I (+)-11 in addition to dihydropalustramic acid (-)-7, have been established starting from the 9 -azabicyclo[3.3.1]nonane system 6 as the common starting material. F urther investigations to convert the bicyclic system 1 into other bioactive naturally occurring compounds are now in progress.

Experimental

M ps (Yanagimoto M P-3S micromelting point apparatus) and bps are uncorrected. Optical rotations were determined with a JA SCO DIP-370 digital polarimeter, and $[a]_{\mathrm{D}}$ values are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were measured on a Shimadzu IR-435 grating infrared spectrophotometer. NM R spectra were recorded on either a JEOL JNM -G SX 270 (270 $\mathrm{MHz}^{1} \mathrm{H}, 67.5 \mathrm{MHz}^{13} \mathrm{C}$) or a JEOL JNM-GSX $500(500 \mathrm{MHz}$ ${ }^{1} \mathrm{H}, 125 \mathrm{M} \mathrm{Hz}{ }^{13} \mathrm{C}$) spectrometer. Chemical shifts and coupling constants (J) are given in δ values (ppm) and in Hz , respectively. All the NMR spectra were taken for CDCl_{3} solutions with tetramethylsilane as internal standard. Low-resolution and high-resolution mass spectra (electron impact) were recorded on either a Shimadzu QP 1000EX or a JEOL JM S-HX 100 spectrometer. Column chromatography was effected over M erck K ieselgel 60 (230-400 mesh) with a pump (F M I model R P). All the organic extracts were dried over anhydrous magnesium sulfate prior to evaporation.

H uisgen- W hite rearrangement of the lactams (-)-13 α and (-)-13

A saturated solution of nitrogen peroxide in DME $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of (-)-benzyl 2α-ethyl-4-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate (-)-13 \boldsymbol{a}^{1} ($300 \mathrm{mg}, 0.95 \mathrm{mmol}$), sodium acetate ($300 \mathrm{mg}, 3.65 \mathrm{mmol}$) and DME $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter being stirred for 15 min , the mix-

$(-)-21$
Scheme 5 Reagents and conditions: i, DIBAL-H; ii, (COCI) ${ }_{2}$, DM SO $-55^{\circ} \mathrm{C}$; iii, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, 145^{\circ} \mathrm{C}$; iv, $\mathrm{BBr}_{3},-10^{\circ} \mathrm{C}$; v, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C} ;$ vi, $\mathrm{O}_{3}, \mathrm{PPh}_{3},-55^{\circ} \mathrm{C}$
ture was added dropwise to well-stirred 5% aq. sodium hydroxide ($300 \mathrm{~cm}^{3}$) at $-10^{\circ} \mathrm{C}$, and stirring was continued at that temperature until evolution of nitrogen ceased. The reaction mixture was acidified with 10% hydrochloric acid, and extracted with diethyl ether. The extract was washed with brine, and evaporated to give a pale yellow oil (298 mg), which was used in the next step without purification.
The Fisher's esterification of the oil (298 mg) with methanol $\left(10 \mathrm{~cm}^{3}\right.$) gave a pale yellow oil (303 mg) which, on column chromatography (hexane-acetone, 20:1), gave (-)-methyl [(2R)-(E)-cis-1-benzylox ycarbonyl-6-(prop-1-enyl)piperidin-2yl]acetate (E)-(-)-9b (88 mg, 28\%), a 2:1 mixture of methyl \{[1S-(1 $\alpha, 5 \beta, 8 a \alpha)]$ - and [1R-(1 $\alpha, 5 \alpha, 8 a \beta)]$-1-ethyl-3-oxohexa-hydro-3H-oxazolo[3,4-a]pyridin-5-yl \}acetate threo- and eryth-ro- 15b (34 mg, 15\%), and (+)-methyl (2R)-erythro-cis-1(benzyloxycarbonyl)dihydropalustramate (+)-erythro-17b (20 $\mathrm{mg}, 6 \%)$. Formation of a trace amount of methyl (2R)-threo-cis-1-(benzyloxycarbonyl)dihydropalustramate threo-17b was detected by GC-M S analysis. The spectral properties of the oxazolidinone esters erythro- and threo-15b and methyl dihydropalustramate (+)-erythro-17b were in accord with those reported. ${ }^{1,9}$

M ethyl (2R)-(E)-cis-piperidin-2-ylacetate (E)-(-)-9b: oil, bp $141-143^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$ (Found: C, $69.1 ; \mathrm{H}, 7.8 \% ; \mathrm{M}^{+}$, 331.1808. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.86 ; \mathrm{H}, 7.60 \%$; M , 331.1784); $[a]_{0}^{16}-54.6$ (c 1.10, CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1731$ and 1687; $\delta_{\mathrm{H}} 1.46-1.84\left(9 \mathrm{H}, \mathrm{m}, 3-, 4-, 5-\mathrm{H}\right.$ and $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right)$, $2.56\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $5.0, \mathrm{CH} \mathrm{H} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $2.64(1 \mathrm{H}$, dd, J 15.0 and $9.5, \mathrm{CHHCO}_{2} \mathrm{CH}_{3}$), $3.63\left(3 \mathrm{H}, \mathrm{s}_{1} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.69-4.75$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 4.78 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}$), $5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0$, OCH H Ph), 5.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0$, OCHHPh), 5.51 (1 H , ddq, J 16.0, 5.0 and 1.0, $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right), 5.57(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 16.0,6.0$ and 1.0, $\mathrm{CH}=\mathrm{CHCH}_{3}$) and $7.26-7.39\left(5 \mathrm{H}, \mathrm{m}\right.$, arom.); $\delta_{\mathrm{c}} 14.3$ (t), 17.9 (q), 27.9 (t), 28.2 (t), 38.7 (t), 47.7 (d), 51.1 (d), 51.6 (q), 67.1 (t), 126.6 (d), 127.7 (d), 127.8 (d), 128.4 (d), 131.7 (d), 136.9 (s), 155.6 (s) and 171.8 (s); m/z 331 ($\mathrm{M}^{+}, 0.8 \%$), 258 (10), 240 (7), 214 (16), 196 (48) and 91 (100).

M ethyl (2R)-threo-cis-dihydropalustramate threo-17b (Found: M^{+}, 349.1861. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires M , 349.1889); m / z $350(M+1,0.8 \%), 349\left(M^{+}, 0.1 \%\right), 182(22), 156(100), 124$ (69) and 91 (64).

Treatment of (-)-benzyl 2β-ethyl-3-oxo-9-azabicyclo[3.3.1]-nonane-9-carboxylate $(-)-13 \boldsymbol{\beta}^{1}$ ($300 \mathrm{mg}, 0.95 \mathrm{mmol}$) with nitrogen peroxide followed by work-up according to the method described above afforded a 15:1 mixture of methyl (2R)-(E)-cis- and (2R)-(Z)-cis-piperidineacetate (E)- and (Z)-9b (169 mg, 54\%) and (+)-methyl (2R)-erythro-cis-dihydro-
palustramate (-)-erythro-17b ($10 \mathrm{mg}, 3 \%$). Formation of a trace amount of methyl (2R)-threo-cis-dihydropalustramate threo-17b was detected by G C-M S analysis.
A 15:1 mixture of methyl (2R)-(E)-cis- and (2R)-(Z)-cispiperidineacetate (E)- and (Z)-9b: oil, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1731 and $1687 ; \delta_{\mathrm{H}} 1.46-1.84(9 \mathrm{H}, \mathrm{m}, 3-, 4-, 5-\mathrm{H}$ and $\mathrm{CH}=\mathrm{CHCH}_{3}$), $2.56\left(0.94 \mathrm{H}\right.$, dd, J 15.0 and $4.5, \mathrm{CHHCO}_{2} \mathrm{CH}_{3}$), $2.60\left(0.06 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{HCO}_{2} \mathrm{CH}_{3}\right), 2.64(0.94 \mathrm{H}$, dd, J 15.0 and $10.0, \mathrm{CHHCO}_{2} \mathrm{CH}_{3}$), 2.70 (0.06 H , dd, J 15.0 and $10.0, \mathrm{CHH}-$ $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.63\left(2.82 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.64\left(0.18 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 4.69-4.75 (1 H , m, 2-H), 4.78 (0.94 H, br t-like, 6-H), 5.08 (0.06 H, br m, 6-H), 5.13 (1 H, d, J 13.0, OCH HPh), 5.17 (1 H, d, J 13.0, OCHH Ph), 5.48-5.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$) and 7.26-7.39 (5 H, m, arom.); $\delta_{\mathrm{c}}[(\mathrm{E})$-isomer/(Z)-isomer] 14.3/14.4 (t), 17.9/12.9 (q), 27.9/27.8 (t), 28.2/30.1 (t), 38.7/39.1 (t), 47.7/47.4 (d), 51.1/ 47.6 (d), 51.5/51.6 (q), 67.06/67.12 (t), 126.6/126.2 (d), 127.72/ 127.77 (d), 127.8/127.9 (d), 128.40/128.37 (d), 131.7/130.6 (d), 136.9/136.8 (s), 155.6/155.5 (s) and 171.83/171.75 (s).

(-)-B enzyl (2R)-cis-(2-hydroxyethyl)-6-(prop-1-enyl)piperidine-

 1-carboxylate (-)-19A $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of diisobutylaluminium hydride in toluene (DIBAL-H ; $2.9 \mathrm{~cm}^{3}, 4.35 \mathrm{mmol}$) was added dropwise to a solution of methyl piperidineacetate (-)-9b ($633 \mathrm{mg}, 1.91$ mmol) in toluene ($10 \mathrm{~cm}^{3}$) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at that temperature for 1 h . The reaction was quenched by addition of 5% hydrochloric acid, and the resulting mixture was extracted with diethyl ether. The extract was washed with brine, and evaporated to give a yellow oil (570 mg) which, on distillation at reduced pressure, gavetitle compound (-)-19 (562 $\mathrm{mg}, 97 \%$) as an oil, bp $119-120^{\circ} \mathrm{C} / 0.008 \mathrm{mmH}$ (Found: M^{+}, 303.1811. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{M}, 303.1835$); $[a]_{0}^{15}-27.8$ (c $\left.0.44, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450$ and 1658; $\delta_{\mathrm{H}} 1.46-1.80$ ($10 \mathrm{H}, \mathrm{m}, 3-\mathrm{-} 4-, 5-\mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{3}$ and CHHCH 2 OH), 1.87 (0.94 H , ddt, J $14.0,11.0$ and $3.5, \mathrm{CHHCH}_{2} \mathrm{OH}$), $1.91(0.06 \mathrm{H}$, ddt, J $14.0,11.0$ and $3.5, \mathrm{CH} \mathrm{H} \mathrm{CH}_{2} \mathrm{OH}$), $3.20(1 \mathrm{H}$, br s, CHH$\mathrm{CH}_{2} \mathrm{OH}$), 3.40-3.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHHOH}$), 3.52-3.60 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHOH}), 4.41-4.50(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.79(0.94 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, 5.08-5.16 (0.06 H, br m, 6-H), 5.11 ($0.94 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5$, OCH H Ph), $5.13(0.06$ H , d, J 12.5, OCH H Ph), $5.16(0.06 \mathrm{H}, \mathrm{d}$, J 12.5, OCHHPh), 5.21 ($0.94 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5,0 \mathrm{CHHPh}$), $5.40-$ $5.60(2 \mathrm{H}, \mathrm{m}$, for E-19, 5.50, ddq, J 16.0, 5.0 and 1.0 , $\mathrm{CH}=\mathrm{CHCH}_{3}$ and 5.56 , dqd, J $16.0,6.0$ and $1.0, \mathrm{CH}=\mathrm{CHCH}_{3}$) and 7.27-7.38 (5 H, m, arom.); $\delta_{\mathrm{c}}[(\mathrm{E})$-isomer/(Z)-isomer] 14.7/ 14.8 (t), 17.5/12.7 (q), 28.7/29.2 (t), 29.3/30.3 (t), 37.3/37.8 (t), 47.2/47.3 (d), 51.4/47.4 (d), 59.0/59.1 (t), 67.4/67.5 (t), 126.8/ 127.7 (d), 127.89/127.97 (d), 127.94/128.01 (d), 128.38/128.35 (d), 131.7/130.60 (d), 136.7/136.6 (s) and 156.8/156.7 (s); m/z $303\left(\mathrm{M}^{+}, 2 \%\right), 212(49), 168$ (15) and 91 (100).

(-)-B enzyl (2R)-cis-2-(2-oxoethyl)-6-(prop-1-enyl)piperidine-1carboxylate (-)-18

U nder argon, a mixture of dimethyl sulfoxide ($525 \mathrm{~mm}^{3}, 7.4$ mmol) and dichloromethane ($7 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of oxalyl chloride ($315 \mathrm{~mm}^{3}, 3.7 \mathrm{mmol}$) in dichloromethane $\left(7 \mathrm{~cm}^{3}\right)$ at $-55^{\circ} \mathrm{C}$, and the mixture was stirred at that temperature for 5 min . To the mixture was added a solution of compound (-)-19 ($560 \mathrm{mg}, 1.85 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$), and the resulting mixture was stirred at $-55^{\circ} \mathrm{C}$ for 20 min . After addition of a solution of triethylamine ($2.7 \mathrm{~cm}^{3}, 18.5 \mathrm{mmol}$) in dichloromethane ($7 \mathrm{~cm}^{3}$) followed by stirring of the mixture at $-55^{\circ} \mathrm{C}$ for 1 h , the mixture was poured into water ($15 \mathrm{~cm}^{3}$), and extracted with diethyl ether. The extract was washed successively with 10% hydrochloric acid, aq. sodium hydrogen carbonate and brine, and evaporated to give a yellow oil (548 mg) which, on distillation at reduced pressure, gavetitle aldehyde(-)-18 (534 $\mathrm{mg}, 96 \%$) as an oil, bp $160-161^{\circ} \mathrm{C} / 0.008 \mathrm{mmH}$ g (Found: C, $71.6 ; \mathrm{H}, 7.5 \% ; \mathrm{M}^{+}$, 301.1706. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.73 ; \mathrm{H}, 7.69 \% ; \mathrm{M}$, 301.1678); $[a]_{0}^{16}-61.8$ (c $0.41, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$

1721 and $1679 ; \delta_{\mathrm{H}} 1.46-1.86(9 \mathrm{H}, \mathrm{m}, 3-4-, 5-\mathrm{H}$ and $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right), 2.59(0.94 \mathrm{H}$, ddd, J 16.0, 8.5 and $2.0, \mathrm{CH}-$ CH O), 2.64 (0.06 H , ddd, J 16.0, 8.5 and 2.0, CH HCHO), 2.71 (0.94 H , ddd, J 16.0, 6.0 and $2.0, \mathrm{CH}$ HCHO), $2.75(0.06 \mathrm{H}$, ddd, J 16.0, 6.0 and 2.0, CH H CH O), 4.79 (0.94 H , br t-like, 6H), 4.82-4.90 (1 H , m, 2-H), 5.08-5.12 (0.06 H, br m, 6-H), 5.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5, \mathrm{OCHHPh}$), 5.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5$, OCHHPh), 5.48-5.62 ($2 \mathrm{H}, \mathrm{m}$, for E-18, 5.51, ddq, J 16.0, 5.0 and 1.0, $\mathrm{CH}=\mathrm{CHCH}_{3}$ and 5.56 , dqd, J $16.0,6.0$ and $1.0, \mathrm{CH}=\mathrm{CHCH}_{3}$), 7.26-7.36 (5 H , m) and $9.68\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.0, \mathrm{CHO}\right.$); $\delta_{\mathrm{c}}[(\mathrm{E})$-isomer/ (Z)-isomer] 14.3/14.5 (t), 17.6/12.9 (q), 28.2/28.5 (t), 28.6/29.9 (t), 45.74/45.69 (d), 48.6/48.9 (t), 51.1/47.4 (d), 67.16/67.24 (t), 126.8/126.4 (d), 127.8/127.65 (d), 127.9/127.69 (d), 128.33/ 128.26 (d), 131.8/130.6 (d), 136.72/136.67 (s), 155.6/155.5 (s) and 200.3/200.2 (d); m/z 301 ($\mathrm{M}^{+}, 2 \%$), 214 (10), 166 (19) and 91 (100).

(-)-Benzyl (2S)-cis-2-methyl-6-(prop-1-enyl)piperidine-1carboxylate (-)-20

Under argon, a mixture of aldehyde (-)-18 (520 mg, 1.73 mmol), tris(triphenylphosphine)rhodium(I) chloride (1.76 g, 1.90 mmol) and valeronitrile ($20 \mathrm{~cm}^{3}$) was heated at $140^{\circ} \mathrm{C}$ for 30 min . The resulting precipitates were filtered off, and washed with diethyl ether. The filtrate and the washings were combined, and evaporated to give a pale yellow residue (923 mg), which was triturated with hot hexane. Evaporation of the solvent left a pale yellow oil (503 mg) which, on column chromatography (hexane-ethyl acetate, 100:1), gave title compound (-)-20 (445 $\mathrm{mg}, 94 \%$) as an oil, bp $94-96^{\circ} \mathrm{C} / 0.007 \mathrm{mmHg}$ (Found: $\mathrm{C}, 74.8$; $\mathrm{H}, 8.6 \% ; \mathrm{M}^{+}, 273.1750 . \mathrm{CH}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.69 ; \mathrm{H}$, $8.48 \% ; \quad \mathrm{M}, 273.1729$); $[a]_{\mathrm{D}}^{16}-21.0$ (c 0.19, CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1676 ; \delta_{\mathrm{H}} 1.18\left(2.82 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0,2-\mathrm{CH}_{3}\right), 1.25$ ($0.18 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0,2-\mathrm{CH}_{3}$), 1.42-1.82 ($9 \mathrm{H}, \mathrm{m}, 3-, 4-, 5-\mathrm{H}$ and $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right), 4.37-4.46(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.71-4.75(0.94 \mathrm{H}, \mathrm{br}$ m, 6-H), 5.02-5.08 ($0.06 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 5.13 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5$, OCH H Ph), $5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5, \mathrm{OCHHPh}), 5.46(0.06 \mathrm{H}$, dqd, J 10.0, 7.0 and $\left.1.0, \mathrm{CH}=\mathrm{CHCH}_{3}\right), 5.50-5.61(1.88 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 5.71\left(0.06 \mathrm{H}, \mathrm{ddq}, \mathrm{J} 10.0,9.0\right.$ and $\left.1.0, \mathrm{CH}=\mathrm{CHCH}_{3}\right)$ and 7.27-7.40 ($5 \mathrm{H}, \mathrm{m}$, arom.) ; $\delta_{\mathrm{c}}[(\mathrm{E})$-isomer/(Z)-isomer] 14.3/ 14.5 (t), 17.8/12.7 (q), 20.5/20.9 (q), 28.8/30.0 (t), 30.2/30.4 (t), 46.4/46.3 (d), 51.4/47.6 (d), 66.77/66.84 (t), 125.9/125.2 (d), 127.7 (d), 127.8 (d), 128.4 (d), $132.5 / 131.7$ (d), 137.2/137.1 (s) and $155.8 / 155.7$ (s); m/z 273 ($\mathrm{M}^{+}, 3 \%$), 214 (23), 182 (100), 138 (26) and 91 (98).

(+)-P inidine (+)-10

Under argon, a mixture of compound (-)-20 (115 mg, 0.42 mmol), boron tribromide ($117 \mathrm{~cm}^{3}, 1.23 \mathrm{mmol}$) and dichloromethane ($7 \mathrm{~cm}^{3}$) was stirred at $-10^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then treated with 10% aq. sodium hydroxide (6 cm^{3}), and extracted with dichloromethane. The extract was acidified with a saturated solution of hydrogen chloride in methanol ($2 \mathrm{~cm}^{3}$), and evaporated to dryness. The resulting solid (76 mg) was recrystallized from a mixture of ethanol and diethyl ether to give a hydrochloride of the title compound (+)$10 \cdot \mathrm{HCl}(64 \mathrm{mg}, 86 \%), \mathrm{mp} 244-245^{\circ} \mathrm{C}$ (lit., ${ }^{\text {4d }} 243-244^{\circ} \mathrm{C}$); $[a]_{0}^{24}+10.6$ (c $\left.0.55, \mathrm{EtOH}\right)\left[\mathrm{lit}\right.$. , $^{\text {dd }}+10.2$ (c 6.0, EtOH)]. The hydrochloride (+) $-10 \cdot \mathrm{HCl}(62 \mathrm{mg}, 0.35 \mathrm{mmol}$) was treated with aq. ammonia ($1 \mathrm{~cm}^{3}$) to afford (+)-pinidine (+)-10 quantitatively as an oil, bp $172-174{ }^{\circ} \mathrm{C} / 760 \mathrm{mmHg}$ [for (-)-10; lit., ${ }^{\text {a }}$, bp $176-177^{\circ} \mathrm{C} / 751 \mathrm{mmH}$ g]; $[a]_{\mathrm{D}}^{24}+10.3$ (c $0.50, \mathrm{EtOH}$) [lit., ${ }^{4 \mathrm{a}}-10.5$ (c 1.88, EtOH)]. The spectral properties of compounds $(+)-10 \cdot \mathrm{HCl}^{49}$ and $(+)-10^{49}$ were in accord with those reported.

D ihydropinidine hydrochloride (-)-21• HCl

A suspension of 5% palladium-on-carbon (10 mg) in methanol $\left(2 \mathrm{~cm}^{3}\right)$ was pre-equilibrated with hydrogen. To the suspension was added a solution of compound (-)-20 ($40 \mathrm{mg}, 0.146 \mathrm{mmol}$) in methanol $\left(3 \mathrm{~cm}^{3}\right)$, and the mixture was hydrogenated at room
temperature until the uptake of hydrogen ceased. The catalyst was filtered off, and the filtrate was acidified with a saturated solution of hydrogen chloride in methanol $\left(2 \mathrm{~cm}^{3}\right)$, and then evaporated to dryness. The resulting solid (26 mg) was recrystallized from a mixture of ethanol and ethyl acetate to give dihydropinidine hydrochloride $(-)-\mathbf{2 1} \cdot \mathrm{HCl}(20 \mathrm{mg}, 79 \%)$ as needles, $\mathrm{mp} 245-247{ }^{\circ} \mathrm{C}$ (lit., ${ }^{8 f} \quad 245-246.2^{\circ} \mathrm{C}$); $[a]_{{ }^{14}}-12.6$ (c 0.28 , EtOH) [lit. ${ }^{4 b}+12.7$ (c 1.07, EtOH), lit., ${ }^{\text {be }}-12.85$ (c 1.09 , EtOH), lit., ${ }^{\text {ff }}-11.6$ (c 3.0, EtOH)]. The spectral properties of compound (-)-21•H CI were in accord with those reported. ${ }^{8 f}$

(-)-Benzyl (2S)-cis-2-formyl-6-methylpiperidine-1-carboxylate (-)-22

Ozone was bubbled through a solution of compound (-)-20 ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) at $-60^{\circ} \mathrm{C}$ until the blue colour of the reaction mixture persisted. Nitrogen was passed through the mixture at $-60^{\circ} \mathrm{C}$ until the blue colour was discharged. Then a solution of triphenylphosphine (62.4 mg , 1.3 mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$) was added, and the resulting mixture was allowed to warm to room temperature. It was then evaporated to give a yellow oil (113 mg) which, on column chromatography (hexane), gave title compound (-)-22 ($32 \mathrm{mg}, 67 \%$). The ${ }^{1} \mathrm{H}$ N M R spectrum of compound (-)- 22 was in accord with one of the authentic sample synthesized by Takahata.
Compound 22: oil, bp $81-83^{\circ} \mathrm{C} / 0.008 \mathrm{mmHg}$ (Found: M^{+}, 261.1395. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{3}$ requires $\mathrm{M}, 261.1365$); $[a]_{\mathrm{D}}^{16}-107.9$ (c $\left.0.81, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1731$ and $1687 ; \delta_{\mathrm{H}} 1.10(3 \mathrm{H}$, d, J $6.5, \mathrm{CH}_{3}$) , 1.36-1.70 ($5 \mathrm{H}, \mathrm{m}, 3-4_{\mathrm{ax}}-$ and $\left.5-\mathrm{H}\right), 2.34(1 \mathrm{H}, \mathrm{br}$ d, J $\left.13.5,4_{\mathrm{eq}}-\mathrm{H}\right), 4.45-4.53(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$, $5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{OCH} \mathrm{HPh}), 5.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{OCHHPh})$ 7.30-7.40 ($5 \mathrm{H}, \mathrm{m}$, arom.) and $9.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0, \mathrm{CH} 0) ; \delta_{\mathrm{c}} 15.1$ (t), 18.9 (q), 22.6 (t), 29.5 (t), 46.7 (d), 59.4 (d), 67.5 (t), 127.9 (d), 128.1 (d), 128.5 (d), 136.4 (s), 155.8 (s) and 202.2 (d); m/z $261\left(\mathrm{M}^{+}, 0.3 \%\right), 260(0.4), 232(70), 188(67)$ and 91 (100).

X-R ay crystallography

Preparation of 2α-ethyl-9-phenylsulfonyl-9-azabicyclo[3.3.1] nonan-3-one (\pm)-12 α. The benzenesulfonamide (\pm)-12 α as a sample for X -ray chromatographic analysis was prepared by employing a racemic reactant (\pm)-6 α as follows.

A suspension of 5% palladium-on-carbon (250 mg) in ethanol ($10 \mathrm{~cm}^{3}$) was pre-equilibrated with hydrogen. To the suspension was added a solution of compound (\pm)-6 $\boldsymbol{\alpha}(500 \mathrm{mg}, 1.66$ mmol) in ethanol ($15 \mathrm{~cm}^{3}$), and the mixture was hydrogenated at room temperature until the uptake of hydrogen ceased. The catalyst was filtered off, and the filtrate was evaporated to give an oil (258 mg), which was used in the next step without purification.
A mixture of the oil (258 mg), triethylamine ($563 \mathrm{~mm}^{3}, 4.0$ mmol), benzenesulfonyl chloride ($256 \mathrm{~mm}^{3}, 2.0 \mathrm{mmol}$) and dichloromethane ($5 \mathrm{~cm}^{3}$) was stirred at $0^{\circ} \mathrm{C}$ for 12 h . A fter dilution of the mixture with dichloromethane ($20 \mathrm{~cm}^{3}$), the resulting mixture was washed successively with 10% hydrochloric acid, aq. sodium hydrogen carbonate and brine, and evaporated to give a pale yellow solid (563 mg) which, on recrystallization from acetone-hexane, gave title compound (\pm)12α ($438 \mathrm{mg}, 86 \%$) as plates, $\mathrm{mp} 118.5-119.5^{\circ} \mathrm{C}$ (Found: C, $62.6 ; \mathrm{H}, 6.9 \% ; \mathrm{M}^{+}, 307.1261 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 62.51 ; \mathrm{H}$, $6.89 \% ; \mathrm{M}, 307.1243)$; $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1707,1356\right.$ and 1163 ; $\mathrm{m} / \mathrm{z} 307\left(\mathrm{M}^{+}, 1 \%\right), 222(100), 166$ (28), 141 (18) and 77 (35). ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NM R data for compound (\pm)-12 α are listed in Table 1.

C rystal data for benzenesulfonamide (\pm)-12 $\alpha . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$, $M=307.41$, orthorhombic, $\quad a=15.818(4), \quad b=15.822(3)$, $\mathrm{C}=12.141(3) \AA, a=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=90.00^{\circ}, \mathrm{V}=3039(2)$ \AA^{3} (by least-squares refinement on diffractometer angle for 25 automatically centred reflections, $\lambda=0.71069 \AA$), space group $\mathrm{Pbca}, \mathrm{Z}=8, \mu(\mathrm{Mo} \mathrm{K} \alpha)=2.12 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=1312, \mathrm{D}_{\mathrm{c}}=1.344 \mathrm{~g}$ cm^{-3}, crystal dimensions: $0.10 \times 0.10 \times 0.05 \mathrm{~mm}$.

Data collection and processing. $\omega-2 \theta$ mode with θ scan
width $=1.42+0.30 \tan \theta, \omega$ scan speed of $8.0 \mathrm{~min}^{-1} ; 1341$ reflections ($20.01 \leq 2 \theta \leq 33.02^{\circ}$) were collected on a Rigaku AFC5R diffractometer with graphite-monochromated Mo-K α radiation and 1491 reflections with $\mathrm{I}>3 \sigma(\mathrm{I})$ were used in the structure determination. No decay corrections was applied.
Structure analysis and refinement. The structure was solved by direct methods (MITHRIL). ${ }^{10}$ Full-matrix least-squares refinement was employed with anisotropic thermal parameters for all non-hydrogen atoms. All computations for the structure determination were carried out on a VA X station 3200 using the crystallographic program package TEXSAN. ${ }^{11}$ Final refinements converged to $R\left(R_{w}\right)=0.047$ (0.052). An ORTEP drawing of compound $\mathbf{1 2 \alpha}$ is shown in Fig. 1. Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge C rystallographic D ata Centre (CCDC). \ddagger

A cknowledgements

We are grateful to the Pharmaceutical Research and Technology Institute of K inki U niversity for financial support, and to Professor Takahata, Toyama Medical and Pharmaceutical University, for the kind supply of the ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum of compound (-)-22. This study was also supported by a Grant-in-A id for Science Research from the Japan Private School Promotion Foundation.
\ddagger For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/66.

References

1 Part 1, O. M uraoka, B.-Z. Zheng, K. Okumura, G. Tanabe, T. M omose and C. H. Eugster, J. Chem. Soc., Perkin Trans. 1, 1996, 1567.

2 G. R. K row, Tetrahedron, 1981, 37, 2697.
3 T. M omose, O. M uraoka, S. A tarashi and T. H orita, C hem. P harm. Bull., 1979, 27, 222; T. M omose, S. A tarashi and O. M uraoka, Tetrahedron L ett., 1974, 3697.
4 (a) W. H. Tallent, V. L. Stromberg and E. C. H orning, J. Am. Chem. Soc., 1955, 77, 6361; (b) W. H. Tallent and E. C. Horning, J. Am. Chem. Soc., 1956, 78, 4467; (c) J. N. Tawara, F. R. Stermitz and A. V. Blokhin, P hytochemistry, 1995, 39, 705; (d) E. L eete and R . A .

Carver, J. Org. Chem., 1975, 40, 2151; (e) R. E. D olle, K . I. Osifo and C.-H. Li, Tetrahedron Lett., 1991, 32, 5029; (f) H. Takahata, H. Bandoh, M. H anayama and T. M omose, Tetrahedron: A symmetry, 1992, 3, 607; (g) W. Oppolzer and E. M erifield, H elv. Chim. A cta, 1993, 76, 957 and references cited therein.
5 (a) F. J. Ritter, I. E. M. Rotgans, E. Talman, P. E. J. Verwiel and F. Stein, Experientia, 1973, 29, 530; (b) F. J. Ritter and C. J. Persoons, N eth. J. Z ool., 1975, 25, 261 (C hem. A bstr., 1976, 84, 148018s); (c) T. Nagasaki, H. K ato, H. H ayashi, M. Shioda, H. Hikasa and F. H amaguchi, Heterocycles, 1990, 30, 561; (d) T. M omose, N. Toyooka, S. Seki and Y. H irai, C hem. Pharm. Bull., 1990, 38, 2072; (e) M. I to and C. K ibayashi, Tetrahedron Lett., 1990, 31, 5065; (f) C. Saliou, A . F leurant, J. P. Célérier and G. Lhommet, Tetrahedron Lett., 1991, 32, 3365; (g) M. Ito and C. K ibayashi, Tetrahedron, 1991, 47, 9329; (h) M. Vavrecka and M. H esse, H elv. Chim. Acta, 1991, 74, 438; (i) C. W. Jefford, Q. Tang and A. Zaslona, J. A m. C hem. Soc., 1991, 113, 3513; (j) E. Zeller and D. S. G rierson, Synlett, 1991, 878; (k) P. L. M acG rane and T. Livinghouse, J. Org. Chem., 1992, 57, 1323; (I) S. R . A ngle and J. G. Breitenbucher, Tetrahedron Lett., 1993, 34, 3985; (m) H. Takahata, H. Bandoh and T. M omose, Tetrahedron, 1993, 49, 11205; (n) K. Higashiyama, K . N akahata and H. Takahashi, J. Chem. Soc., Perkin Trans. 1, 1994, 351; (0) D. R . Artis, I.-S. Cho, S. Jaime-F igueroa and J. M. M uchowski, J. Org. Chem., 1994, 59, 2456; (p) M . J. M unchhof and A I. M eyers, J. A m. C hem. Soc., 1995, 117, 5399 and references cited therein.

6 E. H. White and D. J. Woodcock, in The Chemistry of the A mino Group, ed. S. Patai, Interscience Publishers, L ondon, 1968, p. 440.
7 E. J. Corey and E. A. Broger, Tetrahedron Lett., 1969, 1779; A. Ito, R . Takahashi and Y. Baba, C hem. P harm. Bull., 1975, 23, 3081.
8 (a) A. B. Attygalle, S.-C. X u, K. D. M cCormick, J. M einwald, C. L. Blankespoor and T. Eisner, Tetrahedron, 1993, 49, 9333; (b) T. M omose, N. Toyooka and Y. H irai, Chem. Lett., 1990, 1319; (c) D. L. Comins and M . A . Weglarz, J. O rg. Chem., 1991, 56, 2506; (d) E. Theodorakis, J. Royer and H.-P. H usson, Synth. Commun., 1991, 21, 521; (e) K. Higashiyama, K . N akahata and H. Takahashi, H eterocycles, 1992, 33, 17; (f) Z.-H. Lu and W.-S. Zhou, J. Chem. Soc., Perkin Trans. 1, 1993, 593; (g) D. L. Comins, G. Chung and M. A. Foley, H eterocycles, 1994, 37, 1121; (h) T.-K. Yang, T.-F. Teng, J.-H. Lin and Y.-Y. Lay, Tetrahedron Lett., 1994, 35, 3581 and references cited therein.
9 B. N ader, T. R. Bailey, R. W. Franck and S. M. Weinreb, J. Am. C hem. Soc., 1981, 103, 7573.
10 C. J. Gilmore, J. A ppl. C rystallogr., 1984, 17, 42.
11 TEX SAN : TEXR AY Structure A nalysis Package, M olecular Structures Corporation, The Woodland, Texas, 1985.

Paper 6/04266J
Received 18th J une 1996
A ccepted 10th September 1996

